\qquad PER \qquad

IDEAL GAS LAW

Remember: $1 \mathrm{~atm}=101.3 \mathrm{kPa} \quad \mathrm{R}=8.314 \mathrm{dm}^{3} \cdot \mathrm{kPa} / \mathrm{mol} \cdot \mathrm{K}$

1) Define each of the three main variables for a gas.
2) If temperature is increased while volume is held constant, what will happen to the pressure of a gas?
3) If the temperature is held constant while the pressure on a gas is increased, what will happen to the volume?
4) If volume and temperature are held constant, what will happen to the pressure when more gas is added to the container?

Ideal Gas Law:
5) Write the Ideal Gas Law. What units does each part of the law need to have? (Hint: Look at the units of R , the constant)
6) 2.3 moles of hydrogen gas are in a $250 . \mathrm{cm}^{3}$ container. If the pressure in the container is 140 kPa , what is the temperature of the gas?
7) A $1.5 \mathrm{dm}^{3}$ container has a pressure of $1.2 \times 10^{5} \mathrm{~Pa}$ at a temperature of $25^{\circ} \mathrm{C}$. How many moles of gas are in the container?
8) If 0.57 grams of carbon dioxide is placed in a $250 \mathrm{~cm}^{3}$ container at $40{ }^{\circ} \mathrm{C}$, what will be the pressure of the container?
9) 3.4 grams of oxygen gas is mixed with 5.6 grams of hydrogen gas in a $3.5 \mathrm{dm}^{3}$ container at 256 K . What is the total pressure in the container?

Combined Gas Laws:
10) Write out the combined gas law used when any of the big three variables are changing in a gas problem.
11) While temperature MUST be in Kelvin for these problems, the units for volume and pressure don't matter. Why is this?
12) A gas in a rigid, metal container at $38{ }^{\circ} \mathrm{C}$ and 134 kPa is cooled to $25^{\circ} \mathrm{C}$. What is the pressure in the cooled container?
13) The pressure of a $1.0 \mathrm{dm}^{3}$ flexible container is decreased from 1.5 atm to .85 atm while the temperature is held constant. What is the new volume of the container?
14) If a sample of gas in a $0.55 \mathrm{dm}^{3}$ balloon is heated from 135 K to 255 K while pressure is kept at 105 kPa , what will happen to the volume of the balloon?
15) A $1.4 \mathrm{dm}^{3}$ sample of NO gas at $23{ }^{\circ} \mathrm{C}$ and $1.1 \times 10^{5} \mathrm{~Pa}$ is heat to $45^{\circ} \mathrm{C}$ while the volume increases to $1.6 \mathrm{dm}^{3}$. What is the new pressure of the gas?

