HL Organic Packet Key

1. A
2. D
3. C [1]
4. D
5. C
6. D
7. B
8. C
9. D
10. B
11. A
12. B
13. A
14. C
15. B
16. D
17. D
18. A
19. C
20. A
21. D
22. C
23. B
24. C
25. A
26. A
27. D
28. B
29. C
30. D
31. (i) $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{HCOOH} \rightarrow \mathrm{HCOOCH}_{3}+\mathrm{H}_{2} \mathrm{O}$
[1] for both reactants and [1] for both products (accept $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$) methyl methanoate;
(ii) ethanoic acid; 1
32. (i) $\mathrm{CH}_{2} \mathrm{OH} \mathrm{COOH}$
alcohol (accept hydroxy(l)); carboxylic acid;

Last two marks dependent on correct monomer or reasonable attempt at identifying the monomer.
(ii) condensation;
eliminates $\mathrm{H}_{2} \mathrm{O} /$ a small molecule is eliminated;
33. (i) $\mathrm{COOH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$;
$\mathrm{NH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{2}$;
Accept more detailed formulas.
Award [1] for correct functional groups for both compounds but wrong formulas.
(ii) condensation (polymerization);
two functional groups on each monomer/OWTTE;
(iii)

accept $-\mathrm{CONH}-$
peptide/amide;
water/ $\mathrm{H}_{2} \mathrm{O}$;
(iv) rotate the plane of (plane-)polarized light; asymmetric carbon atom /chiral centre;

(v) glycine/Gly/ $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{COOH}$;
(vi) flavouring agents/plasticizers/solvents/perfumes; ethanol; methanoic acid;
34. (i)

Award [2] for both tetrahedral structures, or [1] if tetrahedral
structure is not clear.
(ii) plane polarized light;
rotation in opposite/different directions;
(iii)

35. (a) restricted rotation because $\mathrm{C}-\mathrm{C}$ bond is now part of a cyclic system;

Award [1] for each correct 3D structure.
If correct structure, but not 3D, or wrongly labelled award [1] only.
Accept 1,3-disubstituted cyclo compound, or any other correct isomer.
(b) (i)

(ii) cis isomer (has lower melting point than the trans-isomer);
intramolecular hydrogen bonds/weaker intermolecular forces /less close packing;
(iii) (gentle) heating of a sample of each isomer; cis isomer readily releases water vapour (forming a cyclic anhydride);
(c) (i) 2-chloropentane;

Award [1] for each correct 3D structure. If correct structures, but not 3D, award [1] only.
(ii) rotation of the plane polarized light in opposite directions;
36. (i) esterification/condensation;

(ii) catalyst;
lowers E_{a} (by providing an alternate pathway);
$\begin{array}{ll}\text { (iii) flavouring agents/in plasticisers/in solvents/in perfumes/making } & 1 \\ \text { aspirin }\end{array}$
37. (a) substitution;
nucleophilic;
bimolecular/two species in rate-determing or slowest step;
Do not accept second order.
Three correct [2] , two correct [1] , one correct [0].
2 max
(b) aminoethane/ethylamine; 1

