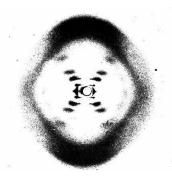

NAME	PERIOD	DATE	
	Unit 5 Notes: DNA		


Forensic DNA Analysis: History and Structure of DNA

- What is DNA: stands for deoxyribonucleic acid and contains ______ information.
- It is found on chromosomes located in the _____ of our cells.

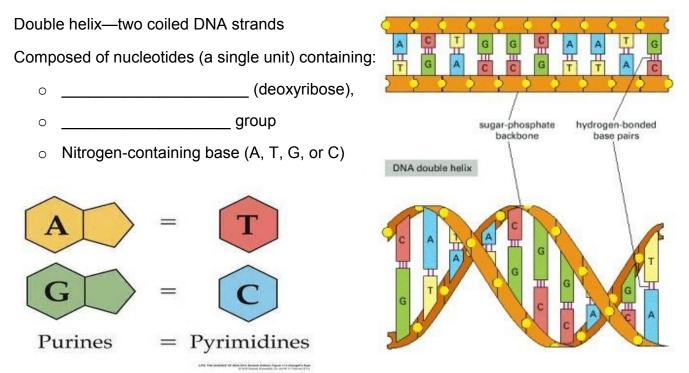
Historical Information

- 1953—James Watson, Francis Crick and Rosalind Franklin discover the configuration of the DNA molecule
- 1980—Ray White describes first polymorphic RFLP marker
- 1985—_____ isolates DNA markers and calls them ______
- 1985—Kary Mullis develops PCR testing
- 1988—FBI starts DNA casework
- 1991—First STR paper
- 1998—FBI launches _____ (Federal DNA database)

People of Historical Significance

- James Watson, Francis Crick, and Maurice Wilkins jointly received the Nobel Prize in 1962 for their determination of the ______.
- Interesting fact: ______ had as much to do with the discovery as the three men with her work on X-ray crystallography.
- She died of cancer and could not be honored for her work.

People of Historical Significance

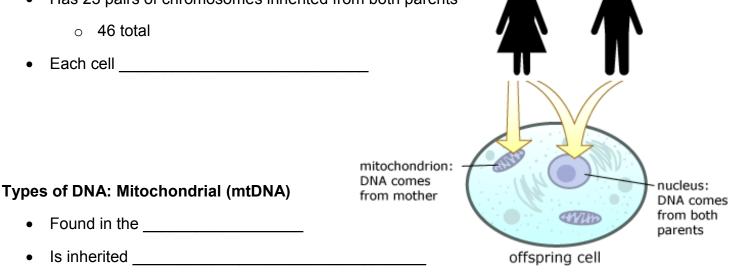

- ______
 - Credited with DNA profiling using ______
 - Restricting fragment length polymorphisms
 - September 1984, Jeffreys saw his first series of blots on an _____
 - Technique first used in _____,
 - Asked by police to confirm rape confession of 17-year-old Richard Buckland
 - Who was denying rape of another woman

Mid-1980s: The Colin Pitchfork Case

- Two young women raped and murdered in Narborough, England
- Comparison of DNA from Buckland and DNA taken from the victims
- 5,000 local men are asked to provide ______ samples
- Jeffreys used samples from other suspects to later help convict Colin Pitchfork
 - Whose DNA ______ the samples from the victims
- 1st _____ and _____ using DNA evidence

DNA General Information

.


double-stranded DNA

- In humans, the order of these bases is •
- The are made up of sugar and phosphate molecules •
- The that form the middle of the molecule are made up of pairs of nitrogen bases
- Four bases in DNA:
 - _____ (A) _____(T) • (G) (C)
- Chargaff's Rule: Bases always pair A to T and G to C.
 - o If a sample has 20% Adenine, how much thymine is present?
 - Guanine?

Types of DNA: Nuclear (DNA)

- Found in _____
- Has 23 pairs of chromosomes inherited from both parents

- Each cell contains hundreds to thousands of mitochondria
- Can be found in remains
- Analysis of mtDNA is more:
 - Rigorous
 - Time-consuming
 - than nucleic testing of DNA
- mtDNA is constructed in a circle or loop •
- Thirty-seven genes are involved in mitochondrial energy generation •
- Is used when ٠

Where is DNA Found?

- Genes are portions of DNA that code for specific proteins
- DNA is found in all _____:
 - White blood cells, semen, saliva, urine, hair roots, teeth, bone, tissue, etc.
- Most abundant in _____ cells
- have no nuclei
 - o Therefore, _____
- DNA obtained from blood comes from ______

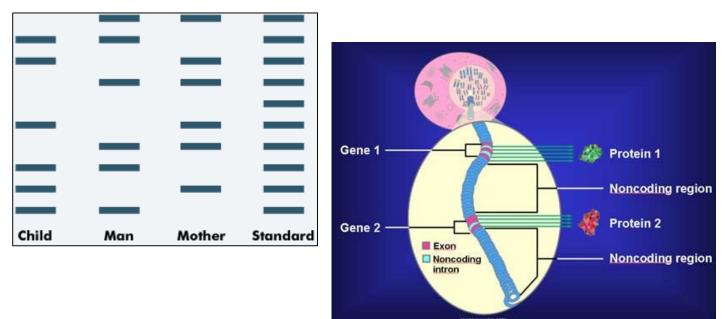
What Factors Affect DNA Evidence

• Several factors can affect DNA left at a crime scene, such as environmental factors:

DNA	testing	_ identify	the suspect was at the crime scene or
0	Mold		
0			
0			
0	Sunlight		
0			

DNA Collection & Comparison

- DNA is collected at crime scenes in a variety of ways using tools such as:
 - ______ and/or blood collection kits (for sample collection of suspects or living victims)
 - 0 _____
 - Tweezers
 - \circ Scissors
 - Sterile cloth squares
 - o UV light
 - \circ _____ $\rightarrow \rightarrow \rightarrow$


1. Place a small drop of whole blood on a VERY CLEAN slide. Hold a second slide at the angle shown.
2. While maintaining contact with the bottom slide, pull the top slide back to contact the drop, which will spread by capillary action.
3. Maintain firm contact with the bottom slide and push the top slide in one motion to produce the smear.

DNA Collection & Comparison

- How is blood collected?
 - Blood on _____:
 - Investigators submit ______
 - Or may use sterile cloth square and small amount of distilled water
 - Dried blood on _____:
 - Investigators send the ______ to the lab
 - Dried blood on a wall, tub or object too big to move to lab:
 - Investigators scrape blood sample into ______ for further analysis

DNA Typing

- Method where DNA is converted into a ______ that distinguish each individual (unique pattern)
- Only _____ of DNA (about 3 million bases) ______ from one person to the next
- Scientists use these ______ to generate a DNA profile of an individual

Non-coding Regions

- 3% of the human DNA code for stuff we need/use
- _____ is non-coding and is repetitive, ______ the same sequence over and over
- 50% of the human genome has interspersed repetitive sequences

Uses of DNA Profiling

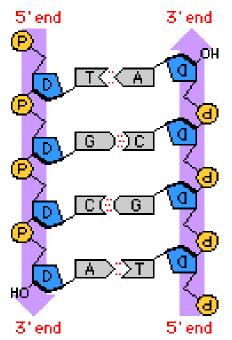
- Identifying ______ suspects
- _____ individuals (finding them not guilty/set free)
- Identifying ______
 - Burned bodies, decomposed bodies, etc.
- Establishing ______ and proving family relations
 - o "You are NOT the father!"
- Matching _____ donors
- Identifications of John Doe or Jane Doe
- Studying _____ and _____
 - Through nuclear and mitochondrial DNAs
- Studying _____ disorders

Forensic DNA Analysis Notes

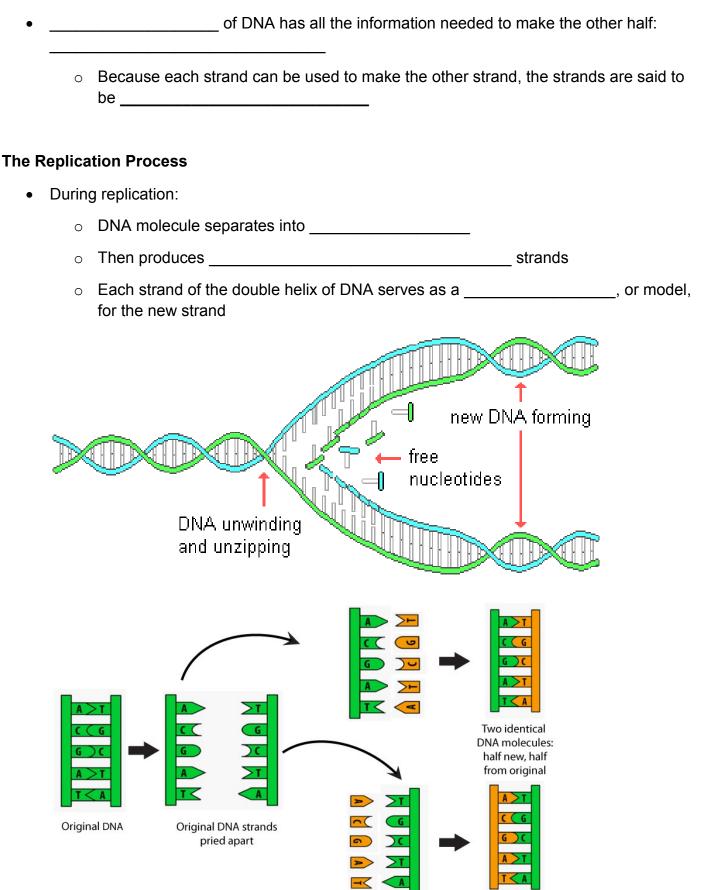
The Double-Helix Model

- Explains Chargaff's rule of ______ (how strands DNA strands held together)
- The nucleotides can be joined together ______
 - \circ $\,$ So, any sequence of bases is possible $\,$

Antiparallel Strands

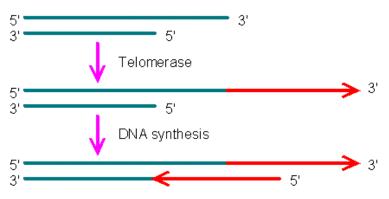

- It allows each strand to carry a sequence of nucleotides
 - Like letters in a four-letter alphabet

Hydrogen Bonding

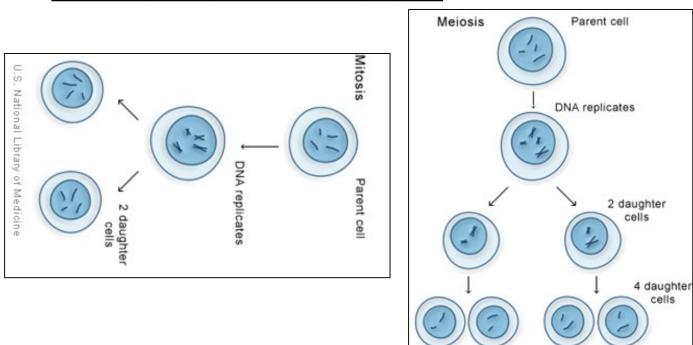

• Hydrogen bonds between bases hold the two strands together

o _____ and _____

- Hydrogen bonds can be ______
 - Two strands can separate to be copied


Copying the Code

- The result of replication is two DNA molecules identical to each other and to the original molecule.
- Each DNA molecule _____ has
 - One _____
 - One _____


Telomeres

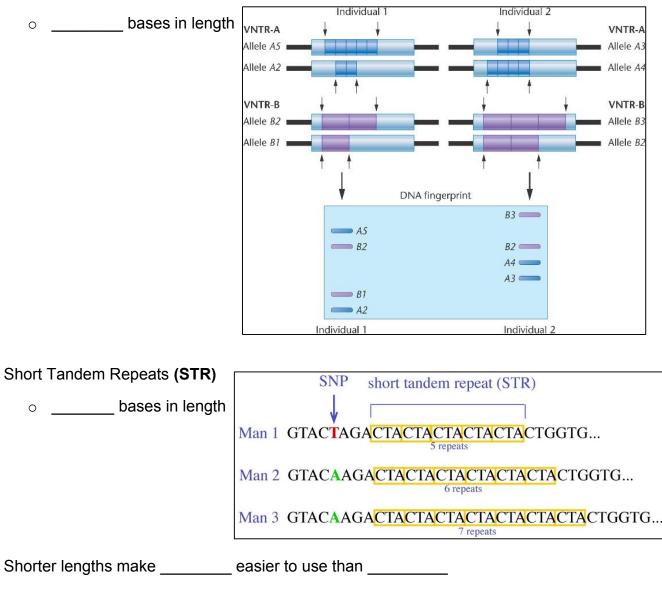
- called telomeres
 - $\circ~$ DNA is often lost from telomeres each time a chromosome replicates
 - An enzyme called ______ compensates for this problem by adding short DNA sequences to telomeres
 - Lengthening the chromosomes slightly

Eukaryotic DNA Replication

• The DNA copies separate from each other in anaphase of mitosis, producing two cells, coded in DNA.

DNA Analysis Notes

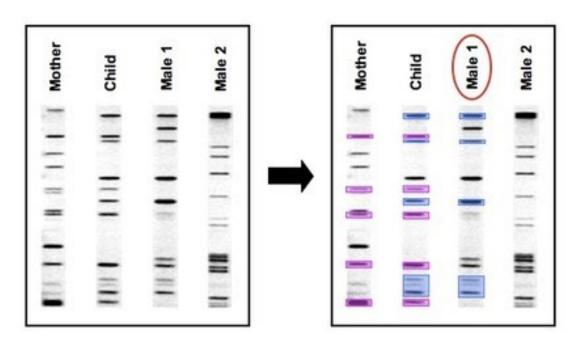
History of Biological Evidence in Forensics

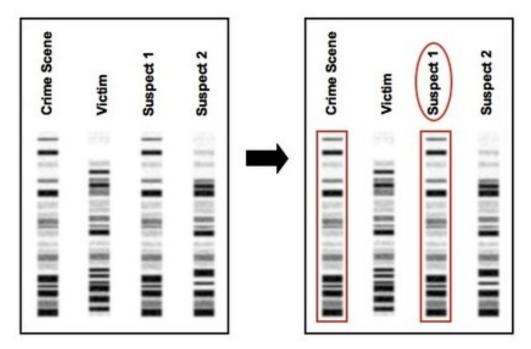

- DNA fingerprinting
 - Also known as ______
 - Used with a ______
- Biological evidence is examined for the presence of inherited traits
- Some forensics laboratory techniques were originally developed for other purposes

DNA Profile

٠

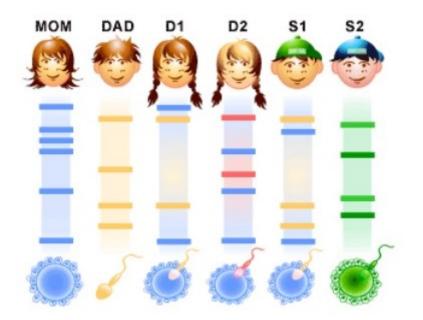
Two types of repeating DNA sequences:

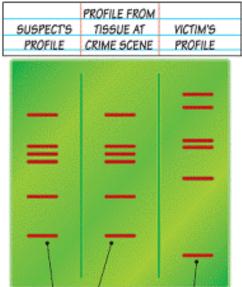

- Variable Numbers of Tandem Repeats (VNTR)
 - o The number of repeats varies from person to person


- VNTR and STR data are analyzed for
 - tissue matching
 - inheritance matching

DNA Profile Matching

- _____Matching
 - Each band in a child's DNA fingerprint must be present in at least ______




- Matching
 - Two samples that have the same band pattern are from the ______

DNA Population Databases

- _____ genetics:
 - o Study gene variations among groups of people
 - Look at probability of a person to have same form of a gene (an allele) as another person
- Identifying the suspect in a crime $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
- Identifying an alleged father in a paternity case (below)

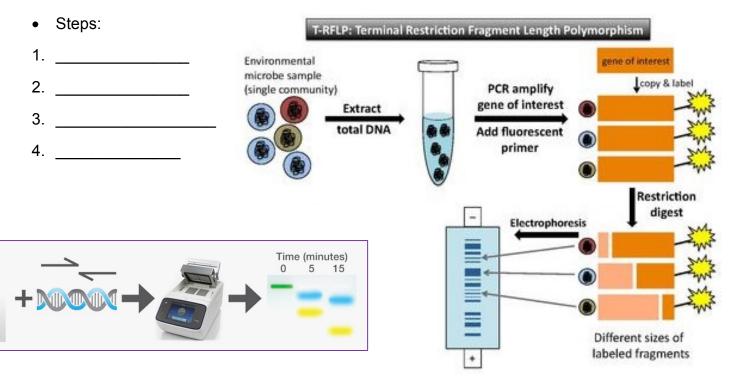
These profiles match, indicating the suspect was at the crime scene

Victim's profile does not match the other two

Sources of DNA

- _____evidence
 - $\circ~$ Ex: saliva, blood, skin, hair, urine, etc.
 - o ____
 - May be only *trace* evidence (Small amount)
- Polymerase chain reaction (PCR)
 - Makes _____ of DNA evidence
 - Amplifies the DNA "_____"

PCR amplification

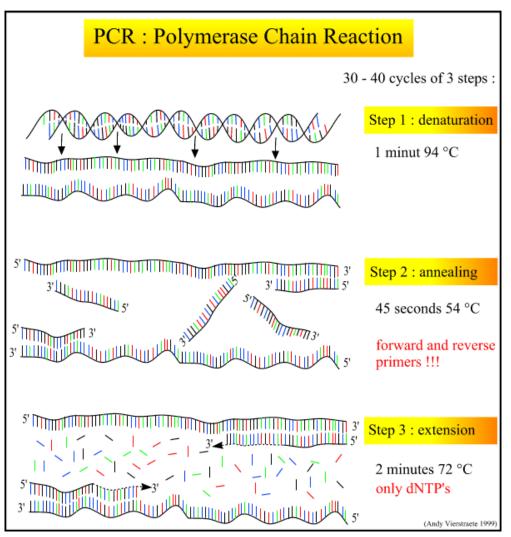


Chain Beaction, copies from copies produced

Collection and Preservation of DNA

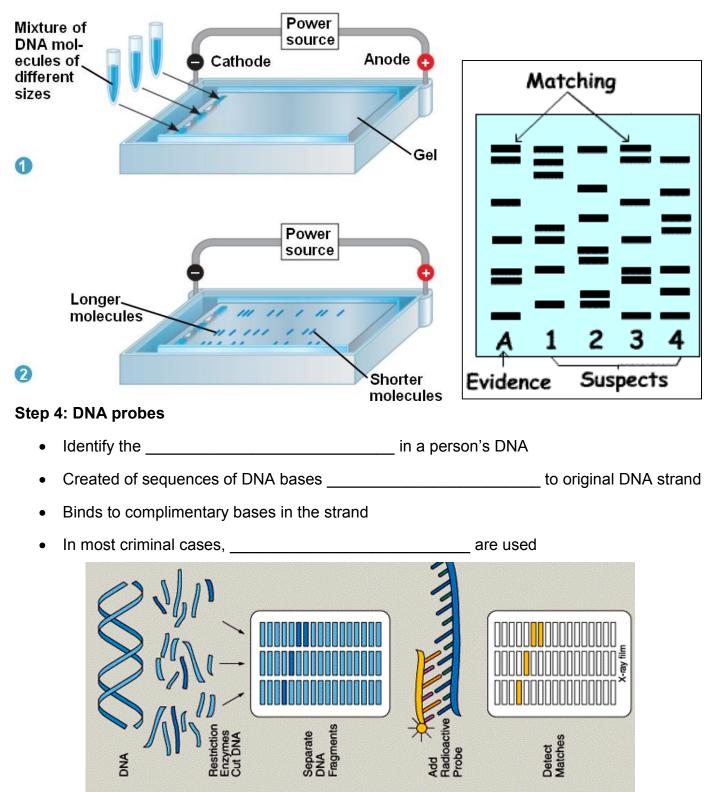
- 1. Use disposable ______ and collection instruments
- 2. _____, talking, sneezing, and coughing in the evidence area
- 3. ______evidence and put it into new paper bags or envelopes
- 4. Dry or freeze the evidence
- 5. Keep evidence ______ during transportation and storage

Preparing DNA Samples for Fingerprinting


Step 1: Extraction

- A. Cells are isolated from biological evidence such as semen, and hair
- B. The cells are broken to from proteins and other cell components
- C. The DNA can be extracted from the

Step 2: Amplification via PCR


- VNTR analyses—polymerase chain reaction (PCR) can be used to amplify the DNA that contains the VNTRs
- STR profiles—restriction enzymes are unnecessary; PCR allows the amplification of the strands with STR sequences
- **Denaturation** (heating): to separate DNA strands Ι.
- Annealing (cooling): with ends of DNA Π.
- III.

Extension: ______ adds nucleotides to the end of each primer

Step 3: Electrophoresis

- Bands of DNA are separated by size using ______
- a. DNA is mixed with special _____
- b. Enzymes cut apart the DNA in specific places forming different sized fragments
- c. DNA is separated within an _____
- d. An electric current is passed through the gel separating the fragments by size

Analysis of DNA Fingerprints and Applications

- _____ are significant in matching samples of DNA
- DNA fingerprinting can
 - Match crime scene DNA with a suspect
 - Determine maternity, paternity, or ______
 - Eliminate a suspect
 - Free a _____ individual
 - Identify human remains

..... Summary

- DNA contains information needed to copy DNA (replication)
- Allows even small amounts of evidence to be identified with a single person
- DNA many repeated sequences that vary in number (non-coding regions = VNTRs and STRs)
- Differences between individuals can be used to produce a DNA fingerprint for an individual
- Polymerase chain reaction (PCR) for DNA amplification has largely eliminated the problem of having only tiny samples/evidence
- DNA evidence must be collected carefully to avoid contamination with other DNA
- DNA analysis involves extraction of DNA, PCR, gel electrophoresis, and visualization (probes or staining)
- DNA profiles are kept by police agencies in electronic databases (CODIS)